본문 바로가기

분류 전체보기325

머신러닝 :: Logistic Regression, Gradient Descent Method 머신러닝 :: 6. Logistic Regression, Gradient Descent Method Logistic Regression · Classification을 위해 Logistic function(=Sigmoid function)을 사용하며, 0~1사이의 값으로 Regression한다. → 이는 0이냐 1이냐를 정하는 Binary class를 classification하는데 확률값처럼 사용이 가능하다. · Logistic Regression은 아래와 같은 선형 분류기를 더 soft하게 바꾸는 데에서 출발한다. · 위 그림에서의 classifier h(x)는 hard boundary(0 또는 1)를 형성하고 있다. h(x)를 아래와 같이 sigmoid function을 적용하여 soft bound.. 2023. 4. 25.
머신러닝 :: New Interpretation of Linear Regression(MLE) 머신러닝 :: 5. New Interpretation of Linear Regression Linear Regression · 아래와 같은 데이터셋에서 Best fit한 line f(x)을 찾으려면 Linear Regression을 수행할 수 있다. · 지난 포스팅에서 다뤘던 Linear Regression에서는 Squared Error E(w)를 최소화하는 f(x)의 coefficient, 즉 w(weight)를 찾음으로써 Given Data set에 Best fit한 Line을 찾는다. · 또 다른 접근방법을 생각해보자. Data set D를 관측하는 확률(Probability)을 최대화하는 f(x)를 찾는다면 아래와 같이 표현이 가능하다. 아래는 f(x)가 given일 경우 Data D가 나타날 확.. 2023. 4. 24.
머신러닝 :: Model Optimization, Evaluation, Cross Validation 머신러닝 :: 4. Model Analysis(Optimization, Evaluation, Cross Validation) Overfitting) vs Generalization · 아래와 같이 주어진 데이터가 있다고 가정했을 때, 이 데이터를 잘 예측할 수 있는 회귀 방정식을 찾아내려면 어떻게 해야할까? · 에러를 가장 적게 내는 것이 정말 좋은 방정식일지는 고민해봐야 한다. 아래 4개의 그림을 보면 왜인지 알 수 있다. · 차수가 3차원까지는 데이터를 완벽하게 따라가지는 않더라도 유사하게 예측했다고 볼 수 있을 것이다. 그런데 9차원까지 간다면? 문제가 발생한다. · 이러한 예측은 주어진 데이터에는 완벽하게 잘 들어맞지만, Unknown Data에는 예측 정확도(Prediction accuracy).. 2023. 3. 21.
머신러닝 :: Linear Regression(선형 회귀식 풀이법, SLE) 머신러닝 :: 3. Linear Regression Linear Regression · 선형회귀(Linear Regression)는 데이터에 가장 잘 맞는(Best Fit) 선을 찾는 것을 말한다. · 입력값에 대한 출력값이 정해진 지도학습(Supervised Learning)이다. Best Fit의 의미는 무엇인가? · 모든 i에 대해서 모델 f(x_i)가 데이터 y_i와 가능한한 가장 가깝게 위치하는 것 · 실 Data와 '차이의 절대값'의 합이 최소가 되는 f(x)를 찾는 것 · Error Function E(w)를 최소화하는 가중치 w를 찾는 것 E(w), Error Function을 최소화하는 가중치 W 구하기 · Error Function은 아래와 같이 오차의 제곱(Squared error)으.. 2023. 3. 20.
머신러닝 :: k-NN for Classification, Regression 머신러닝 :: 2. k-NN(k-Nearest Neighbors) for Regression, Classification k-NN? · 입력받은 Data x의 특성을 파악하기 위해, k개의 가장 가까운 Data들을 통해 특징을 추출해내는 지도학습 알고리즘 · k-NN은 Data labeling이 되어있어 지도학습에 속한다. 여기서 학습(training)은 '데이터를 저장하는 단계', 테스트(test)는 '거리 계산 단계' 로 볼 수 있다. k-NN의 특징 · Case-based reasoning (instance-based, memory-based) : 찾고자 하는 값과 같은 값이 있으면 즉시 답하고, 없으면 가까운 값으로 답한다. · Lazy learning : 러닝타임 동안에는 하는 것이 없다. *L.. 2023. 3. 20.
머신러닝 :: 개요, 머신러닝 딥러닝 차이 머신러닝 :: 1. Introduction to Machine Learning · 인공지능(Artificial Intelligence) : 인간의 지적능력(계산, 학습 등)을 컴퓨터를 통해 구현하는 기능(모든 자동화) · 머신러닝(Machine Learning) : 데이터로부터 의사결정을 위한 패턴을 기계가 스스로 학습 · 딥 러닝(Deep Learning) : 인공신경망 기반의 모델로, 비저어형 데이터로부터 특징 추출/판단(=Deep Neural Network) 머신러닝이란? · "To improve the perfomance of programs base on given data, previous result, or experiences" · 전통적 프로그래밍은 규칙을 사람이 수정 해야 했지만, 머신.. 2023. 3. 20.
Web 개발 :: 12월 다섯째주 WIL18 ■ 개발일지 WIL #18 1. FACTS - 프로젝트 배포 완료 (* 링크 : https://www.gaggamagga.shop/) - 사용자 피드백을 최종 정리하고, 각 아이템 건별로 sorting하여 우선 진행해야하는 부분들을 정리하였다. - 깃허브 액션을 활용하여 CI/CD를 구현하였다. - 작업했던 코드의 테스트코드를 작성하고 제대로 동작되는지 검증하였다. (깃허브 액션 CI 연동 완료) - 전반적인 코드 리팩토링을 완료하였다. 2. FEELINGS - 프로젝트를 마지막 마무리하는 단계에서 필요한 작업들을 위주로 진행했던 것 같다. 꼭 필요한 부분들, 사용자 피드백을 위주로 보완해가는 과정에서 개발자가 느끼는 점과 실 사용자들의 시선에서 느끼는 점이 다르고, 다양한 의견들이 나올 수 있다는 것을.. 2022. 12. 29.
Web개발 :: 프로젝트 정리 및 회고 _TIL82 ■ JITHub 개발일지 82일차 □ TIL(Today I Learned) :: 가까?마까?(GaggaMagga) 프로젝트 가까?마까?(GaggaMagga) 프로젝트 📌 프로젝트 개요 기획 의도 누구나 여행을 떠나서 음식점을 가거나, 점심 식사 메뉴를 정할 때 고민이 있었던 경험이 있을 것 입니다. 본 서비스는 '제주도' 라는 특정 지역에서 먹고자 하는 음식의 종류나 장소를 선택하면 사용자에게 맛집을 추천하고 있습니다. 추천 기능은 머신러닝 유저기반 추천 기능을 활용하여 사용자와 가장 유사한 경험을 갖고 있는 사용자의 데이터들를 통해 음식점을 추천합니다. 방문한 맛집은 다른 사용자와 후기를 공유하고, 후기에는 별점을 넣어 장소별 평가점수를 관리할 수 있습니다. 각 후기에는 댓글과 대댓글 기능으로 유저간 .. 2022. 12. 29.
Web개발 :: Code 기능 리뷰(검색), Deploy _TIL81 ■ JITHub 개발일지 81일차 □ TIL(Today I Learned) :: Code 기능 리뷰(검색), Deploy Algolia 기본 개념 data workflow 1. 데이터베이스나 static 파일같은 데이터 source에서 데이터를 fetch한다. 2. 해당 데이터를 Json Records로 변환한다. * 예시 (An Algolia record (or object) is a set of key-value pairs called attributes.) { "title": "Blackberry and blueberry pie", "description": "A delicious pie recipe that combines blueberries and blackberries.", "image": .. 2022. 12. 28.
Web개발 :: Code Review _ Review CRUD 기능 _TIL80 ■ JITHub 개발일지 80일차 □ TIL(Today I Learned) :: Code Review _ Review CRUD 기능 Review CRUD #models.py from django.core.validators import MaxValueValidator, validate_image_file_extension #validators=[validate_image_file_extension]이미지형식이 아닐때 막아줌 class Review(models.Model): content = models.TextField('내용', max_length=500) review_image_one = models.ImageField('이미지 1', upload_to='review_pics', blank=True,.. 2022. 12. 28.
반응형